

Cornell University

Follow the Sun through the Clouds: Application Migration for Geographically Shifting Workloads

Robbert van Renesse

Cornell University

Joint work with Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero Weijia Song, Hakim Weatherspoon

Infrastructure as a Service (IaaS) Clouds

- Offer on-demand virtual machines (VMs)
- Pay-as-you-go: charge according to used hours
- Provide useful services such as auto-scaling and failure recovering

Handling Geographically Shifting Workloads

Follow the sun

Handling Geographically Shi Lack of homogeneous interface

Follow the sun

- Lack of privileged control
- Lack of infrastructure support
- Lack of common resource management

TOLED A.D. 19

Supercloud Overview

- Application migration as a service across cloud providers and availability zones
 - Support ALL major virtualization platforms and ALL major public cloud providers
- Live migration without changing IP addresses or breaking TCP connections
- Automatic scheduling framework
 - Optimize metrics such as average perceived latency
- Provide cross-cloud storage and networking solution

Supercloud Overview

Nested Virtualization

Xen-Blanket

- Second Layer Hypervisor
- Uniformity

www.delcampe.net

Supercloud Networking

- Goal:
 - Inter-connection
 - Optimized routing
 - Supporting migration
- VPN overlay
- Full-mesh tunnels
- Frenetic SDN controller
- Transparent VM migration
- Public IP address support

VM Migration with Public IP Address

VM Migration with Public IP Address

Centralized VM Image Storage

Geo-Replicated VM Image Storage

•

Decouple Consistency and Data Propagation

Global Meta-Data Propagation

- Challenge:
 - Long latency
- Observation:
 - Single writer
 - No read-write sharing
- Relaxed consistency model
 - Close-to-open consistency
- Propagation policy
 - Commit locally
 - Flush to centralized controller when closing

Evaluation: ZooKeeper Migration

• Application level vs. VM level migration

	ZooKeeper Dynamic Reconfiguration	Supercloud VM migration
Code complexity	 Add/remove nodes: 6700+ lines of code change Leader rotation: not supported yet 	No code change
Transparency	Clients need to be notified	Completely transparent
Performance	Several seconds of downtime due to state synchronization and leader election	Little performance impact

Comparing ZooKeeper Migration Mechanisms

- Initially: Asia 1, US 2
- 2-step reconfiguration:
 - Asia + 1, US -1
- 3-step reconfiguration:
 - Asia +2, US -2
 - Asia -1, US +1
- Supercloud
 - Migrate the leader from US to Asia

Follow the Sun

- Experimental Setup
 - Global ZooKeeper deployment in US and Asia
 - MSN trace
 - Comparing different deployments
 - US Ensemble: all ZooKeeper nodes in the US
 - Global Ensemble: majority in US, one node in Asia
 - **Dynamic Ensemble**: using Supercloud VM migration

Follow the Sun

Supercloud Scheduler

- Decides placement and migration automatically
- Requires run-time monitoring and performance models for cloud resources

Performance Modeling for IaaS Clouds

Click on the resource type to check: <u>Memory System</u>, Disk and File system, Network, Comprehensive Benchmarks

Memory Performance Measurements / Anomalies

Partners in crime

TO LADED A.D.

- NIST ANTD (Advanced Network Techologies Divison): *Monitoring and Security*
 - Abdella Battou
 - Fred de Vaulx
 - Lotfi Benmohamed
 - Charif Mahmoudi
- Cornell Aristotle Project and XSEDE
 - Academic cloud sharing and bursting
 - David Lifka (Cornell CIO)
 - ...

TOLED A.D. 19

Conclusion

- Supercloud: application migration for geographically shifting workloads
 - Crossing heterogeneous cloud providers
 - Automatic scheduling
 - Geo-replicated image storage
 - Wide-area SDN
- Visit our workshop tomorrow morning (Thursday)
- We'll also present exciting cloud performance comparison studies
- More at http://supercloud.cs.cornell.edu

Thank You. Questions?